SOME EXAMPLES OF
COMPLEMENTED MODULAR LATTICES

G. Grätzer and Maria J. Wonenburger

(received November 13, 1961)

Let L be a complemented, κ-complete modular lattice. A theorem of Amemiya and Halperin (see [1], Theorem 4.3) asserts that if the intervals $[0, a]$ and $[0, b]$, $a, b \in L$, are upper κ-continuous then $[0, a \lor b]$ is also upper κ-continuous. Roughly speaking, in L upper κ-continuity is additive. The following question arises naturally: is κ-completeness an additive property of complemented modular lattices? It follows from Corollary 1 to Theorem 1 below that the answer to this question is in the negative.

A complemented modular lattice is called a Von Neumann geometry or continuous geometry if it is complete and continuous. In particular a complete Boolean algebra is a Von Neumann geometry. In any case in a Von Neumann geometry the set of elements which possess a unique complement form a complete Boolean algebra. This Boolean algebra is called the centre of the Von Neumann geometry. Theorem 2 shows that any complete Boolean algebra can be the centre of a Von Neumann geometry with a homogeneous basis of order n (see [3] Part II, definition 3.2 for the definition of a homogeneous basis), n being any fixed natural integer.

Preliminaries

We first recall some properties of regular rings. The definitions and proofs can be found in [3] part II, Chap. II or [2], §3. We always assume that the regular ring has a unit element which will be denoted by 1.

If S is a regular ring, L_S (R_S) denotes the
complemented modular lattices of principal left (right) ideals.
The mapping which takes each element of L_S into its right
annihilator is a dual-isomorphism of L_S onto R_S. Under
this map the principal left ideal $(e)_L$ generated by the
idempotent e goes into the principal right ideal $(1-e)_R$.

If S is a regular ring, the ring S_n of $n \times n$ matrices
with entries in S is also regular. There exists a lattice
isomorphism between L_S (R_S) and the lattice of finitely
generated submodules of the left (right) S-module of n-tuples
(a_1, a_2, \ldots, a_n), $a_1 \in S$. Since S is regular, for every
$A \in S_n$ there exists an idempotent matrix E such that
$(E)_L = (A)_L$. Moreover, it is possible to choose

$$
E = \begin{pmatrix}
e_1 & 0 & \cdots & 0 \\
c_{21} & e_2 & \cdots & 0 \\
& \ddots & \ddots & \ddots \\
c_{n1} & c_{n2} & \cdots & e_n
\end{pmatrix}
$$

where $e_i = e_i$, $c_{ij} = c_{ij}$, $e_i c_j = 0$, for $i, j = 1, 2, \ldots, n$
and $c_{ij} = 0$, for $j > i$. Such a matrix is called a left
canonical matrix. An idempotent matrix such that

$$
e_i^2 = e_i, c_{ij} e_i = c_{ij}, e_i c_{ij} = 0 \text{ for } i, j = 1, 2, \ldots, n\text{ and}
c_{ij} = 0 \text{ for } j > i$$

is called right canonical. For every $A \in S_n$
there exists a right canonical matrix E such that $(A)_R = (E)_R$.

Notice that if E is a right (left) canonical matrix then $1-E$
is left (right) canonical.

In what follows our regular ring S will be the Boolean
ring B defined by a Boolean algebra \mathcal{L}, that is, the elements
of B are those of \mathcal{B} and

$$a + b = ab' \cup ba', \quad ab = a \wedge b,$$

where c' denotes the complement of $c \in \mathcal{B}$. The notation $c = a \cup b$ implies that $ab = 0$. If \mathcal{I} is an ideal of \mathcal{L}, it defines an ideal I of B. There exists a 1-1 correspondence between the elements of \mathcal{L} and the principal ideal of B.

In the ring S_n, there is in general more than one left (right) canonical matrix corresponding to an element $A \in S_n$. However, if two left canonical matrices E and F are such that $(E)_{\mathcal{I}} = (F)_{\mathcal{I}}$ and they have the same idempotents down the main diagonal, then $E = F$. This follows from the fact that $EF = E$ if $(E)_{\mathcal{I}} = (F)_{\mathcal{I}}$. Although in general the element e_1 is not uniquely defined by A, the ideal $(e_1)_{\mathcal{I}}$ is unique.

Since in the Boolean ring B any principal ideal is defined by a unique element, any principal left ideal of B_n is defined by a unique left canonical matrix. We will identify the elements of L_B with the corresponding left canonical matrices.

Some examples of complemented modular lattices

Throughout this section \mathcal{L} will be a Boolean algebra, \mathcal{I} an ideal of \mathcal{L}, and B and I the corresponding Boolean ring and ideal. \mathcal{J} denotes the cardinal power of the set J.

THEOREM 1. Let L consist of the 2×2 left canonical matrices

$$A = \begin{pmatrix} e_1 & 0 \\ a & e_2 \end{pmatrix}, \quad \text{where } e_1, e_2 \in B \text{ and } a \in I. \quad \text{For } A_1, A_2 \in L, \text{ define } A_1 \leq A_2 \text{ if } (A_1)_{\mathcal{I}} \subseteq (A_2)_{\mathcal{I}} \text{ where } (A)_{\mathcal{I}} \text{ is the principal left ideal of } B_2 \text{ generated by } A. \text{ Then } L \text{ is a complemented modular lattice. Moreover, the following conditions are equivalent}
(i) \(L \) is an \(\mathcal{F}_a \)-complete \(\mathcal{F}_a \)-sublattice of \(\overline{L}_{B_2} \).

(ii) \(L \) is an \(\mathcal{F}_a \)-complete \(\mathcal{F}_a \)-continuous \(\mathcal{F}_a \)-sublattice of \(\overline{L}_{B_2} \).

(iii) \(\mathcal{F} \) is an \(\mathcal{F}_a \)-ideal and \(\mathcal{B} \) is \(\mathcal{F}_a \)-complete.

Proof. Let \(R \) be the set of right canonical matrices

\[
A = \begin{pmatrix}
e_1 & 0 \\ a & e_2 \end{pmatrix}, \quad e_1, e_2 \in B \quad \text{with} \quad a \in I,
\]

ordered by the relation

\[A_1 \leq A_2 \text{ if } (A_1)_r \subseteq (A_2)_r. \]

Then the dual isomorphism between \(\overline{L}_{B_2} \) and \(\overline{R}_{B_2} \) induces a dual isomorphism between \(L \) and \(R \). Hence any statement about \(L \) implies its dual, since what we prove for \(L \) can be proved as well for \(R \).

We show first that \(L \) is a complemented modular lattice.

When \(\mathcal{F} = \mathcal{B} \) the ordered set defined in the theorem coincides with \(\overline{L}_{B_2} \) and there is nothing to prove. When \(\mathcal{F} \neq \mathcal{B} \) we will prove that \(L \) is a sublattice of \(\overline{L}_{B_2} \). For this we use the lattice isomorphism between the principal left ideals of \(B_2 \) and the finitely generated submodules of the left \(B \)-module of 2-tuples \((a_1, a_2) \), \(a_i \in B \). If \(\{(a_1, a_2)\} \) denotes the left submodule generated by the vector \((a_1, a_2) \) then the module \(M \) corresponding to the canonical matrix

\[
\begin{pmatrix}
e_1 & 0 \\ a & e_2 \end{pmatrix}
\]

has the form

(1) \(M = \{(e_1, 0)\} \oplus \{(a, e_2)\} = \{(e_1, 0)\} \oplus \{(a, a)\} \oplus \{(0, a_0)\} \)

where \(a_0 = e_2 a^t \) and \(\oplus \) indicates direct sum. Since the matrix is canonical \(e_2 = a \cup a_0 \).
It is clear that the only elements of \(M \) whose second or first component is zero are the elements of the submodules \(\{(e_{1}^{0}, 0)\} \) or \(\{(0, a_{o})\} \), respectively. The elements of \(M \) of the form \((c, c)\) are the elements of \(\{(a \cup_{1} a_{o}, a \cup_{1} a_{o})\} \).

The module

\[
(2) \quad N = \{(f_{1}, 0)\} \oplus \{(b, b)\} \oplus \{(0, b_{o})\},
\]

where \(b \in I, bf_{1} = bb_{o} = 0 \), corresponds to the canonical matrix

\[
\begin{pmatrix}
 f_{1} & 0 \\
 b & f_{2}
\end{pmatrix},
\]

where \(f_{2} = b \cup b_{o} \). Now \(N \) contains \(M \) if and only if

\[
e_{1} \leq f_{1}, \quad a_{o} \leq b_{o} \quad \text{and} \quad a \leq b \cup f_{1} b_{o},
\]
or what is equivalent,

\[
e_{1} \leq f_{1}, \quad e_{2} \leq f_{2}, \quad a \leq b \cup f_{1} f_{2} \quad \text{and} \quad a_{o} b = 0.
\]

In general given two modules \(M \) and \(N \) defined by

(1) and (2)

\[
M \cap N = \{(e_{1} \cup f_{1}, 0)\} + \{(a \cup b, a \cup b)\} + \{(0, a_{o} \cup b_{o})\} = \{(e_{1} \cup f_{1} \cup b_{a_{o}} \cup b_{a_{o}} a, 0)\} \oplus \{(c, c)\} \oplus \{(0, a_{o} \cup b_{o} \cup b_{e_{1} \cup af_{1}})\}
\]

where \(c = af_{1} b_{1} \cup e_{1} a_{1} b_{1} \leq a \cup b \in I \). Hence \(M \cup N \in L \). By duality \(M \cap N \in L \). Therefore \(L \) is a sublattice of a modular lattice and is itself modular. Since

\[
M' = \{(e_{1} a_{1}', 0)\} \oplus \{(0, a_{o}')\}
\]
is a complement of the module \(M \), \(L \) is a complemented modular lattice.

115
Our next step is to show that if \(\mathcal{V} \) is \(\mathcal{F} \)-complete then \(\overline{L}_{B_2} \) is \(\mathcal{F} \)-complete. It is sufficient to show that \(\overline{L}_{B_2} \) is upper \(\mathcal{F} \)-complete, because the lower \(\mathcal{F} \)-completeness follows by duality.

Let \(A^\beta = \begin{pmatrix} e_1^\beta & 0 \\ a_1^\beta & e_2^\beta \end{pmatrix} \in \overline{L}_{B_2} \) for all \(\beta \in J \),

where \(J \leq \mathcal{F} \). It is immediate that if \(\mathcal{V} \) is \(\mathcal{F} \)-complete, the union of the corresponding modules

\[
M_3 = \{(e_1^\beta, 0)\} \oplus \{(a_1^\beta, a_2^\beta)\} \oplus \{(0, a_o^\beta)\} \quad \text{where} \quad a_o^\beta = e_2^\beta (a_1^\beta)'
\]

is the module

\[
M = \{ (\cup e_1^\beta, 0) \} + \{ (\cup a_1^\beta, \cup a_2^\beta) \} + \{ (0, \cup a_o^\beta) \}
\]

which corresponds to the canonical matrix

\[
A = \begin{pmatrix}
\cup e_1^\beta & (\cup a_1^\beta) & (\cup a_o^\beta) & 0 \\
0 & d & (\cup a_1^\beta) & (\cup a_o^\beta)
\end{pmatrix}
\]

where

\[
d = (\cup a_1^\beta) \cdot (\cup e_1^\beta \cup ((\cup a_1^\beta) \cdot (\cup a_o^\beta))').
\]

Now we are ready to prove the equivalence of conditions (i), (ii), (iii).

(i) implies (ii). This is a consequence of the additivity of upper \(\mathcal{F} \)-continuity in complemented \(\mathcal{F} \)-complete modular lattices. For, if

\[
X = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad Y = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},
\]

the intervals \([0, X]\) and \([0, Y]\) are both isomorphic to \(\mathcal{V} \);
hence \(L = [0, X \cup Y] \) is upper \(\mathcal{S} \)-continuous. Using duality we get that \(L \) is \(\mathcal{S} \)-continuous.

(ii) implies (iii). Since \(\mathcal{S} \) is isomorphic to the interval \([0, X]\), if \(L \) is \(\mathcal{S}_\alpha \)-complete then \(B \) is \(\mathcal{S}_\alpha \)-complete.

Now let

\[
C^\beta = \begin{pmatrix} 0 & 0 \\ a^\beta & a^\beta \end{pmatrix} \in L
\]

for all \(\beta \in J \) and \(J \leq \mathcal{S}_\alpha \). Then

\[
\cup C^\beta = \begin{pmatrix} 0 & 0 \\ \cup a^\beta & \cup a^\beta \end{pmatrix} \in L,
\]

which implies that \(\cup a^\beta \in \mathcal{S} \) and therefore \(\mathcal{S} \) is \(\mathcal{S}_\alpha \)-complete.

(iii) implies (i). Let

\[
A^\beta = \begin{pmatrix} e^\beta_1 & 0 \\ a^\beta & e^\beta_2 \end{pmatrix} \in L \quad \text{for all } \beta \in J,
\]

and \(J \leq \mathcal{S}_\alpha \). Then (3) implies that \(\cup A^\beta \in L \), hence (i) holds.

COROLLARY 1. Let \(L \) be as in Theorem 1. Suppose \(\mathcal{S} \) is complete and \(\mathcal{S} \) is an \(\mathcal{S}_\alpha \)-ideal which is not an \(\mathcal{S}_{\alpha+1} \)-ideal. Then

(a) \(L \) contains two elements \(X \) and \(Y \) such that the intervals \([0, X]\) and \([0, Y]\) are complete and continuous and \(L = [0, X \cup Y] \).

(b) \(L \) is \(\mathcal{S}_\alpha \)-complete and \(\mathcal{S}_\alpha \)-continuous but not \(\mathcal{S}_{\alpha+1} \)-complete.

117
Proof. The only thing which has to be proved is that L is not $\mathcal{N}_{\alpha+1}$-complete.

Suppose L is $\mathcal{N}_{\alpha+1}$-complete. Then, since $L = [0, X \cup Y]$, by the additivity of $\mathcal{N}_{\alpha+1}$-continuity in $\mathcal{N}_{\alpha+1}$-complete lattices, L is $\mathcal{N}_{\alpha+1}$-continuous. Let Ω be the first ordinal such that $\overline{\Omega} = \mathcal{N}_{\alpha+1}$ and $\{a^\beta\}_{\beta < \Omega}$ an increasing chain of elements of \mathcal{N} such that $\bigcup a^\beta \notin \mathcal{N}$. Take $C^\beta = \begin{pmatrix} 0 & 0 \\ a^\beta & a^\beta \end{pmatrix}$

Then $C = \bigcup C^\beta = \begin{pmatrix} 0 & 0 \\ \bigcup a^\beta & \bigcup a^\beta \end{pmatrix} \notin L$.

If $C' = \begin{pmatrix} e_1 & 0 \\ b & * \end{pmatrix}$ is the supremum of the C^β in L then $b \notin \bigcup a^\beta$, since $b \in I$. On the other hand $C < C'$ implies that $\bigcup a^\beta \leq b \cup e_1$, hence $e_1 \notin 0$. Now $D = \begin{pmatrix} e_1 & 0 \\ 0 & 0 \end{pmatrix} \in L$. $D \cap C^\beta = 0$ for all $\beta < \Omega$, but $D \cap C \neq 0$, which contradicts the $\mathcal{N}_{\alpha+1}$-continuity of L.

COROLLARY 2. Let L be as in Theorem 1. Then L is a Von Neumann geometry if and only if \mathcal{G} is a complete Boolean algebra and \mathcal{I} is a principal ideal, that is, $I = [0, x]$, $x \in B$. In this case the center of L is isomorphic to $[0, x] \times [0, x'] \times [0, x']$.

118
Proof. When \(\mathcal{I} = [0, x] \), \(L \) is the lattice direct sum of the intervals \([0, Y_0], [0, Y_1], [0, Y_2]\), where

\[
Y_0 = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}, \quad Y_1 = \begin{pmatrix} x' & 0 \\ 0 & 0 \end{pmatrix}, \quad Y_2 = \begin{pmatrix} 0 & 0 \\ 0 & x' \end{pmatrix}.
\]

Hence its center is isomorphic to \([0, x] \times [0, x] \times [0, x]\).

Theorem 2. If \(\mathcal{B} \) is a complete Boolean algebra, then the lattice \(L_B^n \) is a Von Neumann geometry whose center is isomorphic to \(\mathcal{B} \).

Remark. For \(n = 2 \) this theorem is contained in Theorem 1.

Proof. Because of the dual isomorphism between \(L_B^n \) and \(\mathcal{B} \), we only need to prove that \(L_B^n \) is upper complete and upper continuous. Now \(L_B^n = [0, X_1 \cup X_2 \cup \ldots \cup X_n] \), where \(X_i \) is the canonical matrix with 1 in the \((i, i)\) place and zeros elsewhere, and the interval \([0, X_i]\) being isomorphic to \(\mathcal{B} \), is continuous. Therefore, by the theorem of Amemiya and Halperin quoted in the introduction, if \(L_B^n \) is upper complete it is also upper continuous. So it is sufficient to prove that \(L_B^n \) is upper complete.

We use induction on \(n \). If \(n = 1 \), \(L_B \cong \mathcal{B} \) and there is nothing to prove. Assume then that the theorem is true for \(n-1 \). Let \(\Lambda^\beta \) be an increasing chain, where \(\beta < \Omega \), \(\Omega \) any limit ordinal, and

\[
E = \begin{pmatrix} 1 & 0 & \ldots & 0 & 0 \\ 0 & 1 & \ldots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & 1 & 0 \\ 0 & 0 & \ldots & 0 & 0 \end{pmatrix} \in L_B^n.
\]
Then the elements $A^\beta \cap E$ form an increasing chain. To the element $A^\beta \cap E$ there corresponds a finitely generated submodule N^β of the left B-module of n-tuples and the elements of this submodule have the last component equal zero. Therefore, because of the induction assumption, the increasing chain of submodules N^β has a supremum which is also a submodule whose elements have the last component equal to zero. Let $A' \in \mathbb{L}_B^n$ be the left canonical matrix corresponding to this submodule,

$$
\begin{pmatrix}
e_1 & 0 & \cdots & 0 & 0 \\
e_2 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 \\
\end{pmatrix}
$$

If C is an upper bound of the A^β, $\beta \in \Omega$, then $C \geq A^\beta \cap E$. Hence $C \geq A'$, and $C \geq A^\beta \cup A'$. That is, any upper bound of the A^β is an upper bound of the chain of $A^\beta \cup A'$ and conversely. Let $B^\beta = A^\beta \cup A'$, since $B^\beta \cap E = (A^\beta \cup A') \cap E = A'$,

$$
\begin{pmatrix}
e_1 & 0 & \cdots & 0 & 0 \\
e_2 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 \\
\end{pmatrix}
$$

Moreover, if $\alpha < \beta$, $B^\alpha \subset B^\beta$ and this implies $B^\alpha B^\beta = B^\alpha$, which is equivalent to $b_i^\alpha b_i^\beta = b_i^\alpha$, $i = 1, 2, \ldots, n-1$, $e_n^\alpha e_n^\beta = e_n^\alpha$. Now it is easily seen that
\[
B = \begin{pmatrix}
e_1 & 0 & \cdots & 0 & 0 \\
e_2 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\cup b_1^\beta & \cup b_2^\beta & \cdots & \cup b_{n-1}^\beta & \cup e_n^\beta
\end{pmatrix}
\]

is the supremum of the chain of \(B^\alpha \). For, \(e_n^\alpha b_i^\beta = b_i^\alpha \) and \(e_n^\alpha e_n^\beta = e_n^\alpha \) for \(\alpha < \beta \) imply that the \(b_i^\beta \) and \(e_n^\beta \) form increasing chains. Consequently, \(e_n^\alpha (\cup b_i^\beta) = b_i^\alpha \), \(e_n^\alpha (\cup e_n^\beta) = e_n^\alpha \) and \((\cup e_n^\alpha) (\cup b_i^\beta) = \cup (e_n^\alpha (\cup b_i^\beta)) = \cup b_i^\alpha \).

Therefore \(B \) is a canonical matrix such that \(B^\alpha B = B^\alpha \), which implies \(B^\alpha \leq B \), and it is clear that \(B \) is the supremum.

REFERENCES

Hungarian Academy
Queen's University

121